Micrel, Inc.
MIC2590B
 
September 2008 
21
M9999-091808
 
Using this graph is not nearly as daunting as it may at
first appear. Taking the simplest case first, well assume
that once a fault event such as the one in question
occurs, it will be along time, 10 minutes or more, before
the fault is isolated and the slot is reset. In such a case,
we can approximate this as a single pulse event, that is
to say, theres no significant duty cycle. Then, reading up
from the X-axis at the point where Square Wave Pulse
Duration is equal to 0.1sec (=100ms), we see that the
effective thermal impedance of this MOSFET to a single
pulse event of this duration is only 6% of its continuous
R
?JA)
.
This particular part is specified as having an R
?JA)
  of
50癈/W for intervals of 10 seconds or less. So, some
further math, just to get things ready for the finale:
Assume T
A
 = 55癈 maximum, 1 square inch of copper at
the drain leads, no airflow.
Assume the MOSFET has been carrying just about 5A
for some time.
Then the starting (steady-state)T
J
 is:
 
T
J
 E 55癈 + (7.3m&)(5A)
2
(30癈/W)
 
T
J
 E 60.5癈
Iterate the calculation once to see if this value is within a
few percent of the expected final value. For this iteration
we will start with T
J
 equal to the already calculated value
of 67癈:
R
ON
 at T
J
 = 60.5癈 =[1+(60.5癈25?(0.5%/癈)]?.35m&
 
R
ON
 at T
J
 = 60.5癈 E 7.48m&
 
T
J
 E 55癈 + (7.3m&)(5A)
2
(30癈/W)
 
T
J
 E 60.6癈
At this point, the simplest thing to do is to approximate T
J
 
as 61癈, which will be close enough for all practical
purposes.
Finally, add (10W)(67癈/W)(0.03) = 21癈 to the steady-
state T
J
 to get T
J(TRANSIENT MAX)
 = 82癈. The Si4430DY
can easily handle this value of T
J(MAX)
.
A second illustration of the use of the transient thermal
impedance curves: assume that the system will attempt
multiple retries on a slot showing a fault, with a one
second interval between retry attempts. This frequency
of restarts will significantly increase the dissipation in the
Si4430DY MOSFET. Will the MOSFET be able to handle
the increased dissipation? We get the following:
The same part is operating into a persistent fault, so it is
cycling in a square-wave fashion (no steady-state load)
with a duty cycle of (50msec/second = 0.05).
On the Transient Thermal Impedance Curves, read up
from the X-axis to the line showing Duty Cycle equaling
0.05. The effective R
?JA)
 = (0.7 x 67癈/W) = 4.7癈/W.
Calculating the peak junction temperature:
 
T
J(PEAK MAX)
 = [(10W)(4.7癈/W) + 55癈] = 102癈
And finally, checking the RMS power dissipation just to
be complete:
 
)
)
0.042W
0.05
7.47m&
5A
P
2
RMS
=
=
 
which will result in a negligible temperature rise.
The Si4430DY is electrically and thermally suitable for
this application.
MOSFET and Sense Resistor Selection Guide
Listed below, by Manufacturer and Type Number, are
some of the more popular MOSFET and resistor types
used in PCI hot plug applications. Although far from
comprehensive, this information will constitute a good
starting point for most designs.
 
 
MOSFET Vendors
Key MOSFET Type(s)
Web Address
Vishay (Siliconix)
Si4430DY (LittleFoot Series)
Si4420DY (LittleFoot Series)
www.siliconix.com
International Rectifier
IRF7413A (SO-8 package part)
Si4420DY (second source to Vishay)
www.irf.com
Fairchild Semiconductor
FDS6644 (SO-8 package part)
FDS6670A (SO-8 package part)
FDS6688 (SO-8 package part)
www.fairchildsemi.com
 
Resistor Vendors
Sense Resistors
Web Address
Vishay (Dale)
WSL Series
www.vishay.com/docs/wsl_30100.pdf
IRC
OARS Series
LR Series
(second source to WSL)
irctt.com/pdf_files/OARS.pdf
irctt.com/pdf_files/LRC.pdf
 
相关PDF资料
MIC2591B-2BTQ TR IC PCI HOT PLUG CTLR DUAL 48TQFP
MIC2592B-2BTQ TR IC PCI HOT PLUG CTLR DUAL 48TQFP
MIC2593-2BTQ TR IC PCI HOT PLUG CTLR DUAL 48TQFP
MIC2594-2BM TR IC CTRLR HOT SWAP NEG HV 8-SOIC
MIC2595R-2BM TR IC CTRLR HOT SWAP NEG HV 14-SOIC
MIC280-7BM6 TR IC SUPERVISOR THERMAL SOT23-6
MIC2800-GFSYML TR IC REG TRPL BUCK/LINEAR 16MLF
MIC281-7BM6 TR IC SUPERVISOR THERMAL SOT23-6
相关代理商/技术参数
MIC2591B-2BTQ 功能描述:IC CTRLR HOTPLUG PCI DUAL 48TQFP RoHS:否 类别:集成电路 (IC) >> PMIC - 热交换 系列:- 产品培训模块:Obsolescence Mitigation Program 标准包装:100 系列:- 类型:热插拔开关 应用:通用 内部开关:是 电流限制:可调 电源电压:9 V ~ 13.2 V 工作温度:-40°C ~ 150°C 安装类型:表面贴装 封装/外壳:10-WFDFN 裸露焊盘 供应商设备封装:10-TDFN-EP(3x3) 包装:管件
MIC2591B-2BTQ TR 功能描述:IC PCI HOT PLUG CTLR DUAL 48TQFP RoHS:否 类别:集成电路 (IC) >> PMIC - 热交换 系列:- 产品培训模块:Obsolescence Mitigation Program 标准包装:100 系列:- 类型:热插拔开关 应用:通用 内部开关:是 电流限制:可调 电源电压:9 V ~ 13.2 V 工作温度:-40°C ~ 150°C 安装类型:表面贴装 封装/外壳:10-WFDFN 裸露焊盘 供应商设备封装:10-TDFN-EP(3x3) 包装:管件
MIC2591B-2YTQ 功能描述:热插拔功率分布 Dual-Slot PCI Express Hot-Plug Controller - Lead Free RoHS:否 制造商:Texas Instruments 产品:Controllers & Switches 电流限制: 电源电压-最大:7 V 电源电压-最小:- 0.3 V 工作温度范围: 功率耗散: 安装风格:SMD/SMT 封装 / 箱体:MSOP-8 封装:Tube
MIC2591B-2YTQ TR 功能描述:热插拔功率分布 Dual-Slot PCI Express Hot-Plug Controller - Lead Free RoHS:否 制造商:Texas Instruments 产品:Controllers & Switches 电流限制: 电源电压-最大:7 V 电源电压-最小:- 0.3 V 工作温度范围: 功率耗散: 安装风格:SMD/SMT 封装 / 箱体:MSOP-8 封装:Tube
MIC2592B-2BTQ 功能描述:IC CTRLR HOTPLUG PCI DUAL 48TQFP RoHS:否 类别:集成电路 (IC) >> PMIC - 热交换 系列:- 产品培训模块:Obsolescence Mitigation Program 标准包装:100 系列:- 类型:热插拔开关 应用:通用 内部开关:是 电流限制:可调 电源电压:9 V ~ 13.2 V 工作温度:-40°C ~ 150°C 安装类型:表面贴装 封装/外壳:10-WFDFN 裸露焊盘 供应商设备封装:10-TDFN-EP(3x3) 包装:管件
MIC2592B-2BTQ TR 功能描述:IC PCI HOT PLUG CTLR DUAL 48TQFP RoHS:否 类别:集成电路 (IC) >> PMIC - 热交换 系列:- 产品培训模块:Obsolescence Mitigation Program 标准包装:100 系列:- 类型:热插拔开关 应用:通用 内部开关:是 电流限制:可调 电源电压:9 V ~ 13.2 V 工作温度:-40°C ~ 150°C 安装类型:表面贴装 封装/外壳:10-WFDFN 裸露焊盘 供应商设备封装:10-TDFN-EP(3x3) 包装:管件
MIC2592B-2YTQ 功能描述:热插拔功率分布 Dual-slot PCI-Express Hot Swap Power Controller - Lead Free RoHS:否 制造商:Texas Instruments 产品:Controllers & Switches 电流限制: 电源电压-最大:7 V 电源电压-最小:- 0.3 V 工作温度范围: 功率耗散: 安装风格:SMD/SMT 封装 / 箱体:MSOP-8 封装:Tube
MIC2592B-2YTQ TR 功能描述:热插拔功率分布 Dual-slot PCI-Express Hot Swap Power Controller - Lead Free RoHS:否 制造商:Texas Instruments 产品:Controllers & Switches 电流限制: 电源电压-最大:7 V 电源电压-最小:- 0.3 V 工作温度范围: 功率耗散: 安装风格:SMD/SMT 封装 / 箱体:MSOP-8 封装:Tube